فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی











متن کامل


نویسندگان: 

Esmaeiili Masoumeh | Kiani Kourosh

اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    12
  • شماره: 

    1
  • صفحات: 

    83-93
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    29
  • دانلود: 

    0
چکیده: 

The CLASSIFICATION of emotions using electroencephalography (EEG) signals is inherently challenging due to the intricate nature of brain activity. Overcoming inconsistencies in EEG signals and establishing a universally applicable sentiment analysis model are essential objectives. This study introduces an innovative approach to cross-subject emotion recognition, employing a genetic algorithm (GA) to eliminate non-informative frames. Then, the optimal frames identified by the GA undergo spatial feature extraction using common spatial patterns (CSP) and the logarithm of variance. Subsequently, these features are input into a Transformer network to capture spatial-temporal features, and the emotion CLASSIFICATION is executed using a fully connected (FC) layer with a Softmax activation function. Therefore, the innovations of this paper include using a limited number of channels for emotion CLASSIFICATION without sacrificing accuracy, selecting optimal signal segments using the GA, and employing the Transformer network for high-accuracy and high-speed CLASSIFICATION. The proposed method undergoes evaluation on two publicly accessible datasets, SEED and SEED-V, across two distinct scenarios. Notably, it attains mean accuracy rates of 99.96% and 99.51% in the cross-subject scenario, and 99.93% and 99.43% in the multi-subject scenario for the SEED and SEED-V datasets, respectively. Noteworthy is the outperformance of the proposed method over the state-of-the-art (SOTA) in both scenarios for both datasets, thus underscoring its superior efficacy. Additionally, comparing the accuracy of individual subjects with previous works in cross subject scenario further confirms the superiority of the proposed method for both datasets.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 29

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2013
  • دوره: 

    21
تعامل: 
  • بازدید: 

    133
  • دانلود: 

    0
چکیده: 

INTRODUCTION: SOME STUDIES HAVE BEEN DONE ABOUT EEG (ELECTROENCEPHALOGRAM) ANALYSIS FOR COMMUNICATION BETWEEN BRAIN AND COMPUTER. IN THIS STUDY, EEG SIGNALS ARE USED TO DETECT THREE KINDS OF TASKS: REST WITH CLOSE EYES, RIGHT HAND MOVEMENT AND RIGHT HAND MOTOR IMAGERY...

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 133

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

نشریه: 

Neuroscience letters

اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    694
  • شماره: 

    -
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    57
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 57

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

نشریه: 

Brain Inform

اطلاعات دوره: 
  • سال: 

    2018
  • دوره: 

    5
  • شماره: 

    2
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    68
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 68

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

FATTAHI D. | BOOSTANI R.

اطلاعات دوره: 
  • سال: 

    2012
  • دوره: 

    36
  • شماره: 

    E2
  • صفحات: 

    147-161
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    292
  • دانلود: 

    0
چکیده: 

Brain Computer Interface (BCI) systems still suffer from lack of accuracy in real-time applications. This problem emerges from isolated optimization, and in some occasions from mismatching of feature extraction and CLASSIFICATION stages. To unify optimization of both stages, this paper presents a novel scheme to integrate them and simultaneously optimize under a unit criterion. The proposed method iteratively estimates both spatio-spectral filters and classifier weights under a non-linear form of Fisher criterion. In order to validate the introduced method, two standard EEG sets, one containing 118 EEG signals and the other 29, were employed to demonstrate its spatial resolution capability. Experimental results on both datasets reveal the superiority of the proposed scheme in terms of enhancing the CLASSIFICATION performance simultaneously with speeding up the optimization process, compared to the conventional methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 292

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2025
  • دوره: 

    4
  • شماره: 

    1
  • صفحات: 

    517-525
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    7
  • دانلود: 

    0
چکیده: 

This paper proposes a method for processing motor imagery-based Electroencephalography (EEG) signals to generate precise signals for Brain-Computer Interface (BCI) devices used in rehabilitation and physical treatments. BCI research is mainly used in neuroprosthetic applications to help improve disabilities. We analyze EEG data from seven healthy individuals using 59-channel caps. The signals are down-sampled to 100 Hz after pre-processing to remove artifacts and noise by using Filter Bank Common Spatial Patterns (FBCSP). EEG features are extracted using the Fisher Discriminant Ratio (FDR). A comprehensive comparison of CLASSIFICATION methods is conducted, encompassing statistical techniques, machine learning algorithms, and neural network-based models. Specifically, Linear Discriminant Analysis (LDA) and K-Nearest Neighbors (KNN) are evaluated as statistical classifiers; Support Vector Machine (SVM) is used for the machine learning approach; and Radial Basis Function (RBF), Probabilistic Neural Network (PNN), and Extreme Learning Machine (ELM) are explored as neural network models. Model performance is validated using K-fold cross-validation and confusion matrix analysis. Among all evaluated classifiers, the ELM model—implemented as a single-layer neural network—demonstrates superior CLASSIFICATION accuracy, suggesting its strong potential for real-time BCI applications in neurorehabilitation.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 7

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    80
  • شماره: 

    10
  • صفحات: 

    789-797
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    374
  • دانلود: 

    130
چکیده: 

زمینه و هدف: سیستم های رابط مغز و رایانه از طریق سیگنال های مغزی امکان ارتباط با دنیای بیرون را بدون استفاده از واسطه های فیزیولوژیکی برای افراد دارای ناتوانی جسمی فراهم می کند. یکی از انواع این سیستم ها، سیستم های مبتنی بر تصور حرکتی است. از مهمترین بخش ها در طراحی این سیستم ها، طبقه بندی سیگنال های مغزی مبتنی بر تصور حرکت به کلاس های تصور حرکت به منظور تبدیل به فرمان کنترلی است. در این مقاله یک روش نوین طبقه بندی سیگنال های مغزی مبتنی بر تصور حرکتی با استفاده از روش های یادگیری عمیق ارایه شده است. روش بررسی: این مطالعه مقطعی در دانشکده فناوری های نوین پزشکی دانشگاه علوم پزشکی اصفهان از بهمن 1398 تا تیر 1401 انجام شد در بلوک پیش-پردازش قطعه بندی سیگنال های مغزی، انتخاب کانال های مناسب و استفاده از فیلتر باترورث (Butterworth filter)، سپس تبدیل موجک جهت انتقال به حوزه زمان-فرکانس و در قسمت طبقه بندی از دو طبقه بند شبکه یادگیری عمیق کانولوشنی یک بعدی با دو معماری و شبکه یادگیری عمیق کانولوشن دوبعدی با دو معماری با ورودی سه موجک مادر Cmor، Mexicanhat و Cgaus به کار گرفته شده و درنهایت عملکرد شبکه ها بررسی شده اند. یافته ها: سه کانال برای 9 سوژه موردنظر، به عنوان بهترین کانال ها انتخاب شدند. همچنین پس از یافتن پارامترهای بهینه در ساختار داده، تبدیل موجک با موجک مادر Cgaus بالاترین درصد را در دو معماری پیشنهاد شده، دارد. صحت 53/92%، بالاترین صحت مربوط به معماری دوم شبکه عصبی کانولوشن دوبعدی پیشنهاد داده شده است. نتیجه گیری: نتایج به دست آمده از شبکه های پیشنهاد شده، نشان دهنده آن است که شبکه های یادگیری عمیق مناسب می توانند به عنوان ابزاری مناسب و دقیق برای طبقه بندی دادگان مبتنی بر تصور حرکت مورد استفاده قرار گیرند.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 374

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 130 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2018
  • دوره: 

    26
  • شماره: 

    1
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    85
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 85

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2017
  • دوره: 

    27
  • شماره: 

    8
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    78
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 78

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2018
  • دوره: 

    5
  • شماره: 

    4
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    195
  • دانلود: 

    0
چکیده: 

Background: Emotion recognition, as a subset of affective computing, has received considerable attention in recent years. Emotions are key to human-computer interactions. Electroencephalogram (EEG) is considered a valuable physiological source of information for classifying emotions. However, it has complex and chaotic behavior. Methods: In this study, an attempt is made to extract important nonlinear features from EEGs with the aim of emotion recognition. We also take advantage of machine learning methods such as evolutionary feature selection methods and committee machines to enhance the CLASSIFICATION performance. CLASSIFICATION performed concerning both arousal and valence factors. Results: Results suggest that the proposed method is successful and comparable to the previous works. A recognition rate equal to 90% achieved, and the most significant features reported. We apply the final CLASSIFICATION scheme to 2 different databases including our recorded EEGs and a benchmark dataset to evaluate the suggested approach. Conclusion: Our findings approve of the effectiveness of using nonlinear features and a combination of classifiers. Results are also discussed from different points of view to understand brain dynamics better while emotion changes. This study reveals useful insights about emotion CLASSIFICATION and brain-behavior related to emotion elicitation.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 195

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 11
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button